Institutional Biosafety Committees: Promoting Optimal Practice Now and in the Future

Assessing the Risks of Viral Vector Protocols

Bruce Crise, PhD, CBSP

Advanced Technology Program

A subsidiary of Science Applications International Corporation

Outline

- Viral Vector Protocol Review:
 - What to look for
 - How to make it safe
- Role of the IBC
 - NIH Guidelines for Research Involving Recombinant DNA
- How to assess risk
 - The registration form
 - What the IBC needs to know
 - The underlying biology of the virus/vector system and transgene being expressed
 - Quality assurance requirements

Outline Continued

- Mitigation of risks
 - Process controls
 - Training & Testing
 - Fluorescent markers and their application
 - Engineering controls
 - PPE
 - Vaccination
 - Quality control
 - Virology and Molecular Biology tool kit
- Animals: Added Risks

Role of the IBC

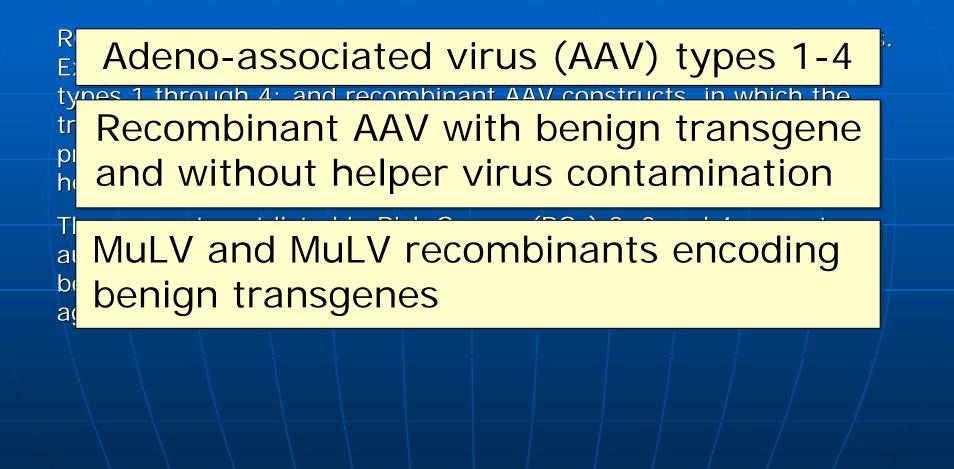
 To obtain a full understanding of the risk associated with viral vector research

 To provide a comprehensive review and independent risk assessment of the research

Subject matter experts

 To ensure that experiments are conducted safely, and that appropriate measures are used to mitigate risks

NIH Guidelines: Risk Groups


Risk Group 1 (RG1)Agents that are not associated with disease in health
adult humans

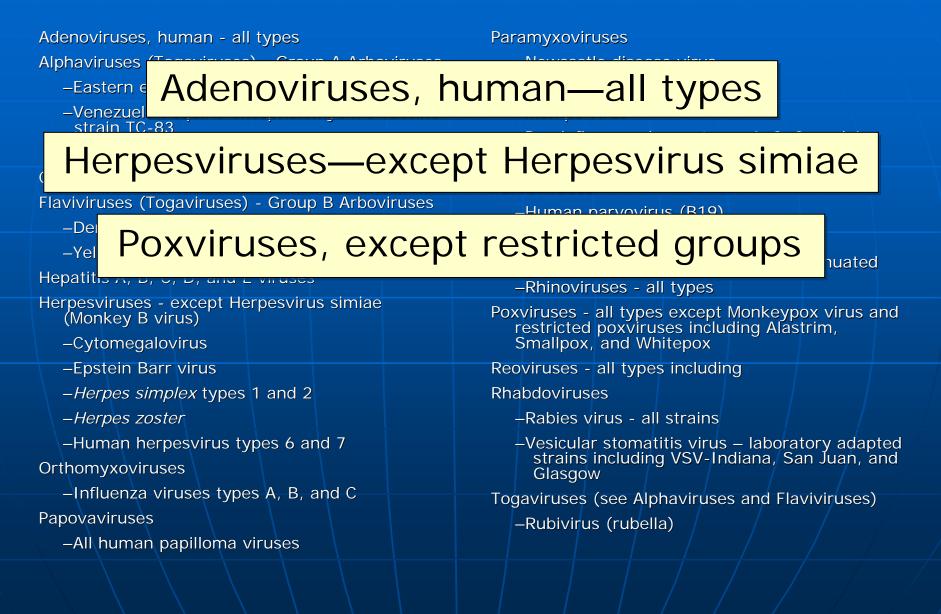
Risk Group 2 (RG2)Agents that are associated with human disease
which is rarely serious and for which preventive or
therapeutic interventions are often available

Risk Group 3 (RG3) Agents that are associated with serious or lethal human disease for which preventive or therapeutic interventions *may* be available (high individual risk but low community risk)

Risk Group 4 (RG4) Agents that are likely to cause serious or lethal human disease for which preventive or therapeutic interventions are *not usually* available (high individual risk and high community risk)

Appendix B-I. Risk Group 1 (RG1) Agents

Risk Groups Described in NIH Guidelines


Risk Group 1 (RG1)Agents that are not associated with disease in health
adult humans

Risk Group 2 (RG2) Agents that are associated with human disease which is rarely serious and for which preventive or therapeutic interventions are *often* available

Risk Group 3 (RG3) Agents that are associated with serious or lethal human disease for which preventive or therapeutic interventions *may* be available (high individual risk but low community risk)

Risk Group 4 (RG4) Agents that are likely to cause serious or lethal human disease for which preventive or therapeutic interventions are *not usually* available (high individual risk and high community risk)

Appendix B-II-D. Risk Group 2 (RG2) – Viruses

Risk Groups Described in NIH Guidelines

Risk Group 1 (RG1)Agents that are not associated with disease in health
adult humans

Risk Group 2 (RG2) Agents that are associated with human disease which is rarely serious and for which preventive or therapeutic interventions are *often* available

Risk Group 3 (RG3) Agents that are associated with serious or lethal human disease for which preventive or therapeutic interventions *may be* available (high individual risk but low community risk)

Risk Group 4 (RG4) Agents that are likely to cause serious or lethal human disease for which preventive or therapeutic interventions are *not usually* available (high individual risk and high community risk)

Appendix B-III-D. Risk Group 3 (RG3) Viruses and Prions

Alphaviruses (Togaviruses) - Group A Arboviruses

-Semliki Forest virus

-Venezuelan oquino onconhalomvolitis virus

(except Flaviviruses

–Yellow fe Poxviruses

–Monkeyp Retroviruses

Retroviruses

- -Japanese HIV-1 and HIV-2
 - HTLV-1 and HTLV-2SIV

(RG2))

Retroviruses

–Human immunodeficiency virus (HIV) types 1 and 2

-Human T cell lymphotropic virus (HTLV) types 1 and 2

-Simian immunodeficiency virus (SIV)

Rhabdoviruses

-Vesicular stomatitis virus

Risk Groups Described in NIH Guidelines

Risk Group 1 (RG1) Agents that are not associated with disease in health adult humans

Risk Group 2 (RG2) Agents that are associated with human disease which is rarely serious and for which preventive or therapeutic interventions are *often* available

Risk Group 3 (RG3) Agents that are associated with serious or lethal human disease for which preventive or therapeutic interventions *may* be available (high individual risk but low community risk)

Risk Group 4 (RG4) Agents that are likely to cause serious or lethal human disease for which preventive or therapeutic interventions are *not usually* available (high individual risk and high community risk)

Appendix B-IV-D. Risk Group 4 (RG4) Viral Agents

Arenaviruses

-Guanarito virus

-Lassa virus

–Junin virus

-Machupo virus

-Sabia

Bunyaviruses (Nairovirus)

-Crimean-Congo hemorrhagic fever virus

Filoviruses

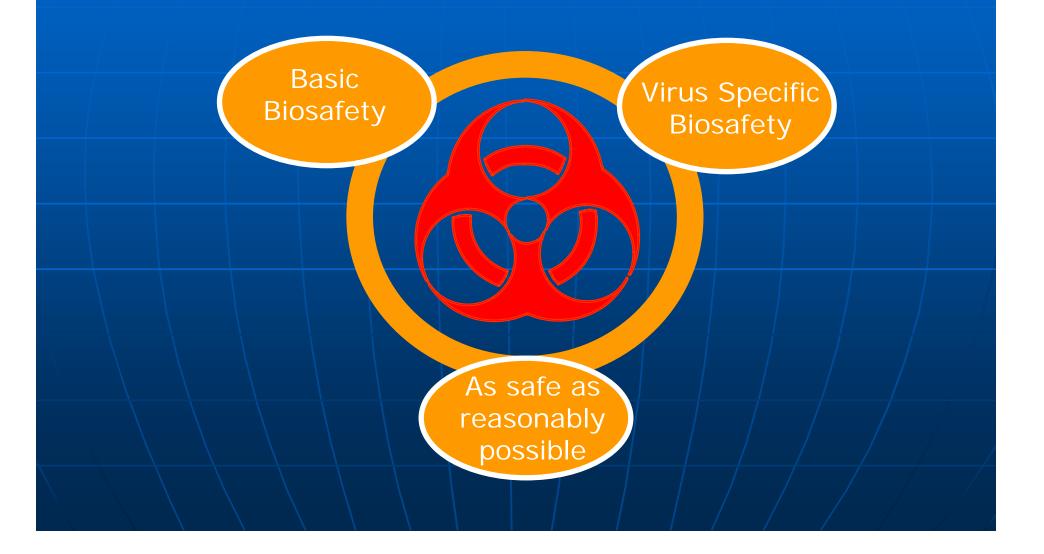
-Ebola virus

-Marburg virus

Flaviruses (Togaviruses) - Group B Arboviruses

-Tick-borne encephalitis virus

Herpesviruses (alpha)


–Herpesvirus simiae (Herpes B or Monkey B virus)

Paramyxoviruses

–Equine morbillivirus

Hemorrhagic fever agents and viruses as yet undefined

The Review Should Follow Biology and Common Sense

IBC Forms and Responses

Calvin tries filling out an IBC form...

Cartoon Image Removed

...and working on the IBC

Cartoon Image Removed

IBC Forms and Responses

- The form should ask the right questions
- The form should provide some guidance, but not specific answers
- What should the IBC do when the PI doesn't understand the problem?
- What about reagents/animals generated elsewhere (commercial and noncommercial sources)? Custom produced viral vector stocks and "home grown" vector systems
 - Quality Control Issues

What the IBC Needs to Know

- What viral vectors will be used?
- What experiments will be done with recombinant DNA and/or viral vectors?
- Will anything be done that would extend the host range or enhance the pathogenicity of the vectors?
- Is it reasonable to expect that the vectors can be complimented or recombine in the proposed experiments?
- What will be done to minimize the risks in the proposed experiments?
- Reagent cycle: "Cradle to grave"

IBC Forms and Responses

 How to handle "blanket" protocols that cover many kinds of vector systems and a myriad of expressed genes

 What won't be done in the experiments can be as important as what will be done

Basic Biosafety Concerns

- What is the host range of the parental virus? (infection vs. replication)
- Has anything been done to extend the host range of the vector?
- What is the pathogenicity of the parental virus?
- Has anything been done to extend the pathogenicity? (oncogenes, toxin genes, etc.)
- Can the recombinant DNA be mobilized? (viral vs. nonviral DNAs...complementation vs. recombination)
- Is the free DNA/RNA infectious?

Virus Specific Biosafety Concerns

- What is the normal route of infection? (aerosols vs. direct contact)
- Can the vector interact with endogenous viruses? (MLV vectors in murine cells)
- Can the vector interact with exogenous viruses (human adenoviruses with adenovirus and AAV vectors)
- If the vector is intended to be defective are there any replication competent recombinants in the stock?
- Does the disinfectant/procedure inactivate the vector that is being used?

Recombinant DNA and Viral Vectors

• What is a virus?

- It's small and hard to manipulate...
- Viral life cycles and viral life styles
- Recombinant DNA applications that involve viral vectors:
 - Replication competent viral vectors
 - Replication defective viral vectors
 - Cells and animals with viral vectors
 - Expression of genes (cDNAs, miRNA, etc)

Things Viruses Do... Different viral vectors do things differently

- Modify host genome
- Modify host immune response
- Remain latent
- Circulate in blood or remain in tissues
- Shed from the host
 - Bedding and excreta
 - Aerosol
- Pathogenic to host
- Recombine with other viruses (can happen during production or in vivo after introduction into the animal)

Developing a Broader Sense of Risk for rDNA and Viral Vectors

- Biological function of transgene
- Biological control
 - Permissive host (or permissive grafted host)
 - Immunity for viral vector
- Immunity evoked by transgene
 - Human genes
 - Regulatory RNAs

Comprehensive gene information: http://atlasgeneticsoncology.org/index.html

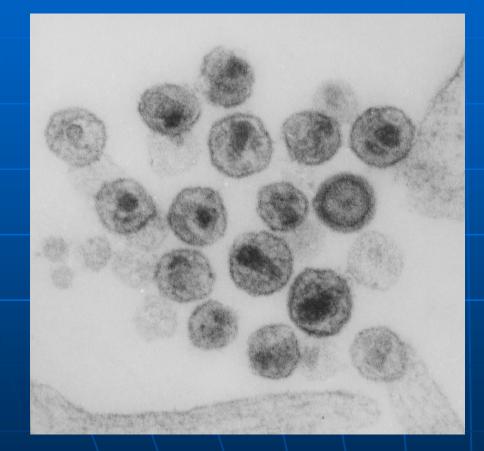
As Safe as Reasonably Possible

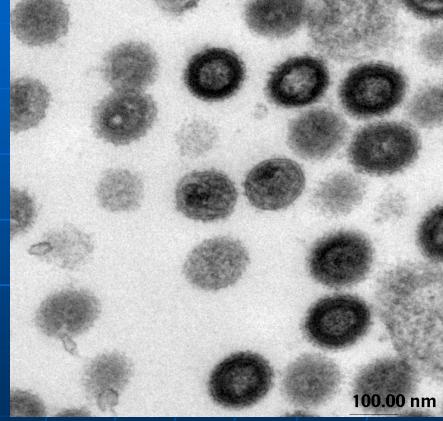
- Biological barriers are your best protection: If the vector won't replicate in a human...
- Physical barriers (BSCs, gloves, masks, clothing, etc.) are important, but they need to match the route of infection
- Watch out for sharps/needles!
- Your immune system is the final level of protection; try not to use it. (vaccination can help in some cases)
- Know what you are working with: Quality control for cells, animals and vectors

Quality Assurance

- Is the laboratory infrastructure capable of supporting the experiments
- Are the SOPs supplied with the IBC registration sufficient to cover the activities
- How current are the SOPs relative to the laboratory activities
 - IBC renewals and updates
- Monitoring laboratory activities

What's Being Done with the Vector?


- Types of manipulations
 - Culturing, titering, concentration, purification


Introduction into animals

- And will the viral vector be coming back out?
 - Cells and explants
 - Pathology samples
 - Wastes

 Does the nucleic acid of the viral vector present a risk

Lentiviral Vector Considerations

Wild Type HIV-1 Particles

Mutant HIV-1 Particles

Useful Guidance for Lentiviral Vectors

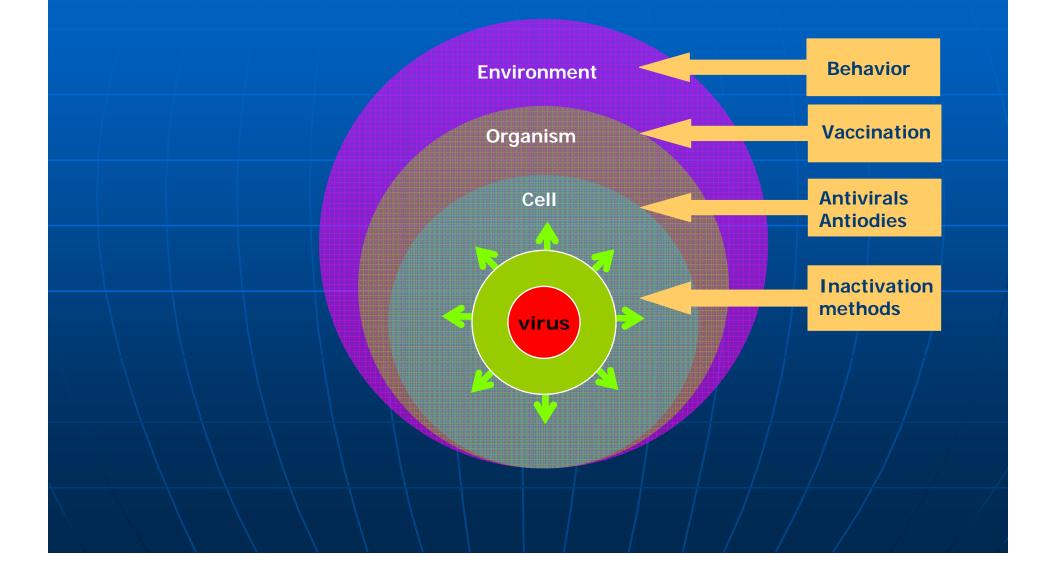
Biosafety Considerations for Research with Lentiviral Vectors

Recombinant DNA Advisory Committee (RAC) Guidance Document

Background: The use of lentiviral vectors has been increasing because the vector system has attractive features; however, such research also raises biosafety issues. The NIH Office of Biotechnology Activities has received frequent questions regarding the appropriate containment for lentiviral vectors, particularly those derived from HIV-1. Because the *NIH Guidelines for Research Involving Recombinant DNA Molecules (NIH Guidelines)* do not explicitly address containment for research with lentiviral vectors, the RAC was asked to provide additional guidance for institutional biosafety committees (IBCs) and investigators on how to conduct a risk assessment for lentiviral vector research. At the March RAC 2006 meeting (webcast), the RAC offered the following findings and recommendations.

http://oba.od.nih.gov/rdna_rac/rac_guidance_lentivirus.html

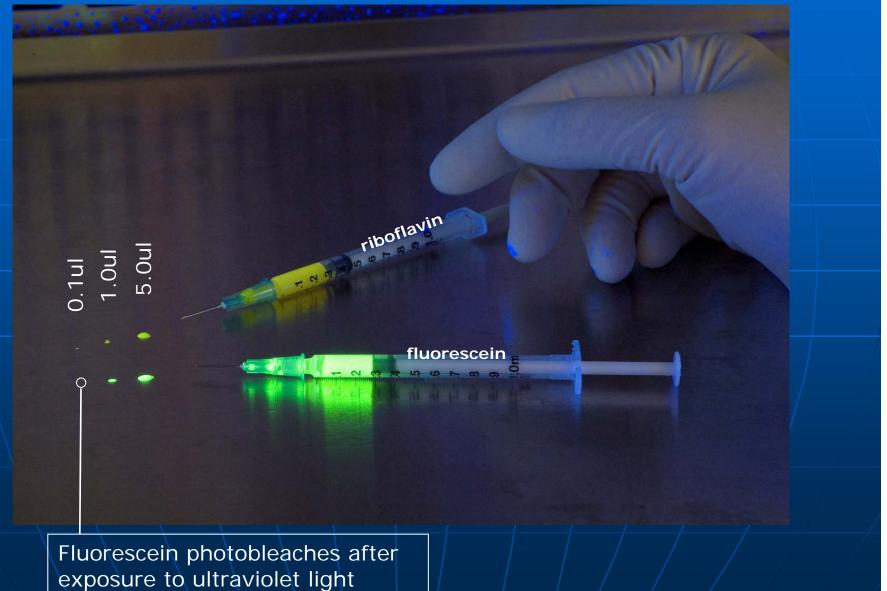
- The number of recombination events needed to reassemble the virus
- Is the entire virus present ?
 - env (and tat) deletions common in lentiviral vectors

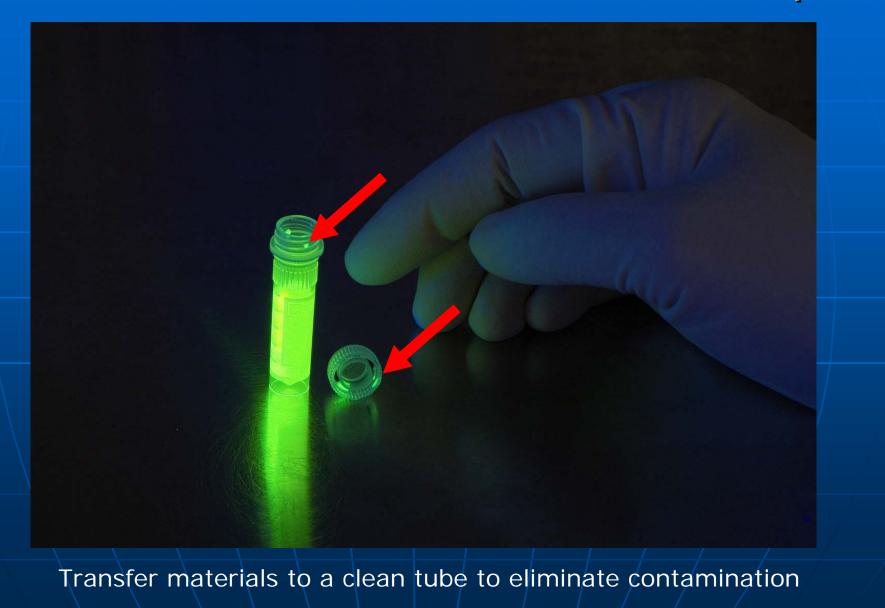

Lentiviral Vectors

- Env-deleted lentiviral vectors complimented by VSV-G do not appear to give rise to replicating viruses
- Lentiviral vectors do not successfully recombine with any known endogenous viruses
- Nature of transgene
- Integration/insertional mutagenesis
 - One of the few instances where antivirals can block
 - But there has to be advnaced planning
- Lentiviral vector infection of human cells can pose special risks
- In some cases, the literature that comes with commercial lentiviral vectors is misleading
- It is not easy to characterize a complex retroviral library (commercial or noncommercial)

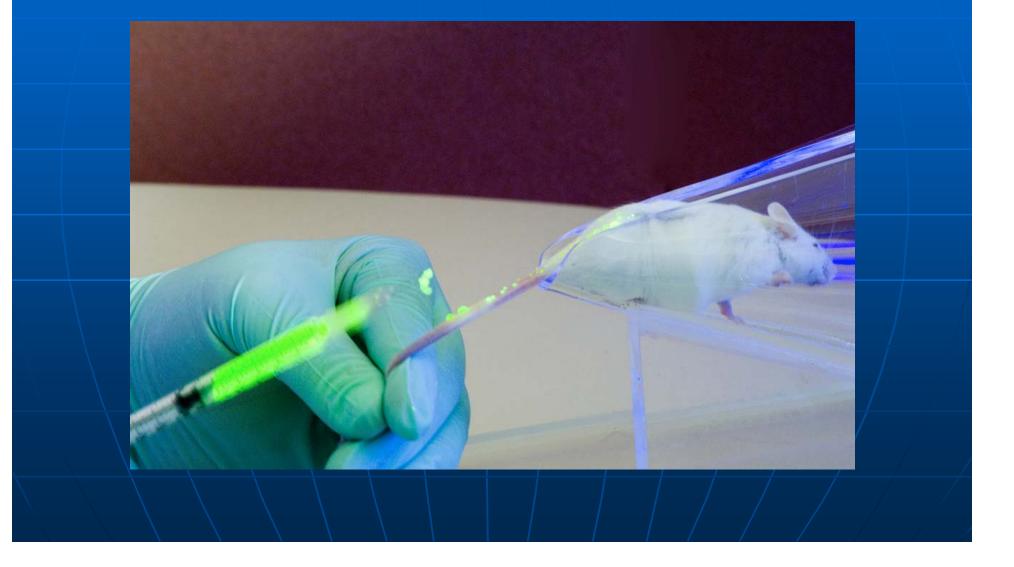
Recombination

- Are all the sequences needed to reconstitute the virus ever present in one cell?
- Sequence homology enhances the rate of recombination but recombination still happens in the absence of homology
- Rare events happen frequently in high titer viral stocks
- It only takes one replication competent recombinant virus...


Mitigation Measures


Process Controls and Training: Fluorescent Markers

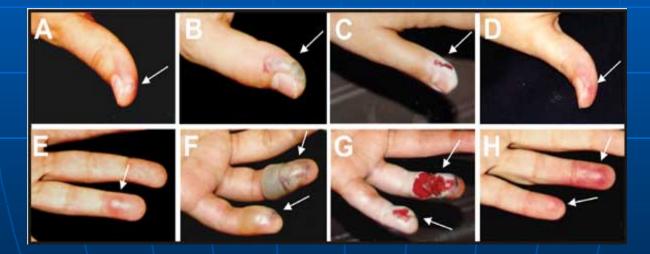
- Fluorescent materials for tracking materials prior to use with agent/vector
- Easily tracked with UV light
 - Illumination from a UV light in safety cabinet/hood
 - Hand-held UV light
- Markers:
 - Riboflavin
 - 200mg/L
 - Fluorescein
 - 350mg/L


Process Controls & Training Riboflavin and Fluorescein

Material Retained on Threads of Cap

Post-Injection Leakage

Where's the Spill?



Engineering Controls and PPE

- Sharps !
- Do the physical barriers match the risk?
- Large scale considerations
- Is the PPE sufficient
 - Aerosols
 - Centrifugation
- Worst case scenarios
 - Spill drill

Sharps

In most cases, alternatives methods are available

Nissin et al., (2003) Emerging Infectious Diseases, Volume 9, Number 6, June 2003. Accidental Infection of Laboratory Worker with Vaccinia

Mitigation of Risk


Engineering Controls

Mitigation of Risk

Engineering Controls cont'd

- Needle pointed away from hands

Planning for the Worst Would practice with a fluorescent marker help?

1 liter of recombinant HSV vector
Spill drills/spill clean-up kits
Contingency Planning

Would Vaccination Help?

Cartoon Image Removed

DISPATCHES

Ocular Vaccinia Infection in Laboratory Worker, Philadelphia, 2004

Felicia M.T. Lewis,*† Esther Chernak,* Erinn Goldman,† Yu Li,† Kevin Karem,† Inger K. Damon, † Richard Henkel, † E. Claire Newbern,* Patrina Ross,* and Caroline C. Johnson*

We report a case of ocular vaccinia infection in an unvaccinated laboratory worker. The patient was infected by a unique strain used in an experiment performed partly outside a biosafety cabinet. Vaccination should continue to be recommended, but laboratories with unvaccinated workers should also implement more stringent biosafety practices.

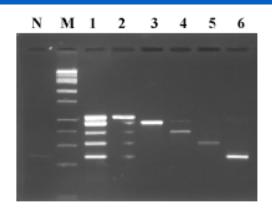
patient wei to a specia Physica a painful le iunctiva an

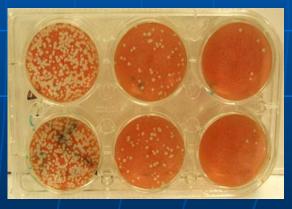
0.5-cm vesicle was noted above the left canthus (Figure 1).

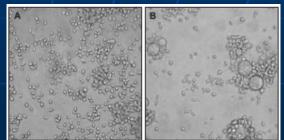
Left ocular range of motion, including palpebral motion,

was sever laboratory scan of the evidence d infection v hospital, w vaccinia. scraping o Pennsylva The patien ments, bro pain medic During

Quality Control: Are You Sure You Know What You Are Getting?




Virology Tool Kit


- Detecting and validating viruses/vectors
 - Cytopathic effects
 - Transformation
 - Molecular assays (ELISA, antibodies, PCR etc.)
 - When in doubt sequence the vector

Useful Ways to Monitor for Viral Vector Quality

 PCR/Sequence Plaque/Replication Assays What to monitor - Viral vector stocks – Producer cells – Transduced/carrier cells • What to monitor for: -RCA– Endogenous contaminants

Experiments Involving Animals

 Interaction between the IBC and ACUC committees is needed for comprehensive safety program

 Co-mingled memberships between the two committees leads to consistency in the review process

 IBC and ACUC forms with complementary questions results in thorough review

Acknowledgements

Steve Hughes

Alan Kane

Jonathan Summers

Joe Kozlovac

Julie BullockMisty Hawes

Cartoon Image Removed

criseb@mail.nih.gov